Красное смещение - definition. What is Красное смещение
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

СДВИГ СПЕКТРАЛЬНЫХ ЛИНИЙ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ В КРАСНУЮ (ДЛИННОВОЛНОВУЮ) СТОРОНУ
Синее смещение; Фиолетовое смещение; Красное смещение спектра; Red Shift
  • справа
  • Вид спектра источника в отсутствие красного смещения (слева) и того же источника при наличии красного смещения (справа)

КРАСНОЕ СМЕЩЕНИЕ         
увеличение длин волн линий в спектре источника излучения (смещение линий в сторону красной части спектра) по сравнению с линиями эталонных спектров. Красное смещение возникает, когда расстояние между источником излучения и его приемником (наблюдателем) увеличивается (см. Доплера эффект) или когда источник находится в сильном гравитационном поле (гравитационное красное смещение). В астрономии наибольшее красное смещение наблюдается в спектрах далеких внегалактических объектов (галактик и квазаров) и рассматривается как следствие космологического расширения Вселенной.
Красное смещение         

понижение частот электромагнитного излучения, одно из проявлений Доплера эффекта. Название "К. с." связано с тем, что в видимой части спектра в результате этого явления линии оказываются смещенными к его красному концу; К. с. наблюдается и в излучениях любых др. частот, например в радиодиапазоне. Противоположный эффект, связанный с повышением частот, называется синим (или фиолетовым) смещением. Чаще всего термин "К. с." используется для обозначения двух явлений - космологическое К. с. и гравитационное К. с.

Космологическим (метагалактическим) К. с. называют наблюдаемое для всех далёких источников (галактик (См. Галактики), квазаров (См. Квазары)) понижение частот излучения, свидетельствующее об удалении этих источников друг от друга и, в частности, от нашей Галактики, т. е. о нестационарности (расширении) Метагалактики. К. с. для галактик было обнаружено американским астрономом В. Слайфером в 1912-14; в 1929 Э. Хаббл открыл, что К. с. для далёких галактик больше, чем для близких, и возрастает приблизительно пропорционально расстоянию (закон К. с., или закон Хаббла). Предлагались различные объяснения наблюдаемого смещения спектральных линий. Такова, например, гипотеза о распаде световых квантов за время, составляющее миллионы и миллиарды лет, в течение которого свет далёких источников достигает земного наблюдателя; согласно этой гипотезе, при распаде уменьшается энергия, с чем связано и изменение частоты излучения. Однако эта гипотеза не подтверждается наблюдениями. В частности, К. с. в разных участках спектра одного и того же источника, в рамках гипотезы, должно быть различным. Между тем все данные наблюдений свидетельствуют о том, что К. с. не зависит от частоты, относительное изменение частоты z = (ν0- ν)/ν0 совершенно одинаково для всех частот излучения не только в оптическом, но и в радиодиапазоне данного источника (ν0 - частота некоторой линии спектра источника, ν - частота той же линии, регистрируемая приёмником; ν<ν0). Такое изменение частоты - характерное свойство доплеровского смещения и фактически исключает все др. истолкования К. с.

В относительности теории (См. Относительности теория) доплеровское К. с. рассматривается как результат замедления течения времени в движущейся системе отсчёта (эффект специальной теории относительности). Если скорость системы источника относительно системы приёмника составляет υ (в случае метагалактич. К. с. υ - это Лучевая скорость), то

(c - скорость света в вакууме) и по наблюдаемому К. с. легко определить лучевую скорость источника: . Из этого уравнения следует, что при z → ∞ скорость v приближается к скорости света, оставаясь всегда меньше её (v < с). При скорости v, намного меньшей скорости света (υ << с), формула упрощается: υ cz. Закон Хаббла в этом случае записывается в форме υ = cz = Hr (r - расстояние, Н - постоянная Хаббла). Для определения расстояний до внегалактических объектов по этой формуле нужно знать численное значение постоянной Хаббла Н. Знание этой постоянной очень важно и для космологии (См. Космология): с ней связан т. н. возраст Вселенной.

Вплоть до 50-х гг. 20 в. внегалактические расстояния (измерение которых связано, естественно, с большими трудностями) сильно занижались, в связи с чем значение Н, определённое по этим расстояниям, получилось сильно завышенным. В начале 70-х гг. 20 в. для постоянной Хаббла принято значение Н = 53 ± 5 (км/сек)/Мгпс, обратная величина Т = 1/Н = 18 млрд. лет.

Фотографирование спектров слабых (далёких) источников для измерения К. с., даже при использовании наиболее крупных инструментов и чувствительных фотопластинок, требует благоприятных условий наблюдений и длительных экспозиций. Для галактик уверенно измеряются смещения z ≈ 0,2, соответствующие скорости υ ≈ 60 000 км/сек и расстоянию свыше 1 млрд. пс. При таких скоростях и расстояниях закон Хаббла применим в простейшей форме (погрешность порядка 10\%, т. е. такая же, как погрешность определения Н). Квазары в среднем в сто раз ярче галактик и, следовательно, могут наблюдаться на расстояниях в десять раз больших (если пространство евклидово). Для квазаров действительно регистрируются z ≈ 2 и больше. При смещениях z = 2 скорость υ ≈ 0,8․с = 240 000 км/сек. При таких скоростях уже сказываются специфические космологические эффекты - нестационарность и кривизна пространства - времени (См. Кривизна пространства-времени); в частности, становится неприменимым понятие единого однозначного расстояния (одно из расстояний - расстояние по К. с. - составляет здесь, очевидно, r= υlH = 4,5 млрд. пс). К. с. свидетельствует о расширении всей доступной наблюдениям части Вселенной; это явление обычно называется расширением (астрономической) Вселенной.

Гравитационное К. с. является следствием замедления темпа времени и обусловлено гравитационным полем (эффект общей теории относительности). Это явление (называется также эффектом Эйнштейна, обобщённым эффектом Доплера) было предсказано А. Эйнштейном в 1911, наблюдалось начиная с 1919 сначала в излучении Солнца, а затем и некоторых др. звёзд. Гравитационное К. с. принято характеризовать условной скоростью υ, вычисляемой формально по тем же формулам, что и в случаях космологического К. с. Значения условной скорости: для Солнца υ = 0,6 км/сек, для плотной звезды Сириус В υ = 20 км/сек. В 1959 впервые удалось измерить К. с., обусловленное гравитационным полем Земли, которое очень мало: υ = 7,5․10-5см/ сек (см. Мёссбауэра эффект). В некоторых случаях (например, при коллапсе гравитационном (См. Коллапс гравитационный)) должно наблюдаться К. с. обоих типов (в виде суммарного эффекта).

Лит.: Ландау Л. Д., Лифшиц Е. М., Теория поля, 4 изд., М., 1962, § 89, 107; Наблюдательные основы космологии, пер. с англ., М., 1965.

Г. И. Наан.

Красное смещение         
Кра́сное смеще́ние в астрофизике — явление, при котором длина волны электромагнитного излучения для наблюдателя увеличивается относительно длины волны излучения, испущенного источником. Также красным смещением называется безразмерная величина, которая характеризует изменение длины волны при данном явлении.

ويكيبيديا

Красное смещение

Кра́сное смеще́ние в астрофизике — явление, при котором длина волны электромагнитного излучения для наблюдателя увеличивается относительно длины волны излучения, испущенного источником. Также красным смещением называется безразмерная величина, которая характеризует изменение длины волны при данном явлении. Красное смещение может быть вызвано тремя причинами: оно может быть доплеровским, гравитационным и космологическим, но несмотря на разную природу, во всех трёх случаях красное смещение внешне проявляется одинаковым образом. Обратное явление — уменьшение наблюдаемой длины волны, имеющее ту же природу, — называется синим смещением.

Наблюдение красных смещений широко используется в астрономии, так как позволяет получать информацию о движении небесных тел и других их свойствах. Особенно важны красные смещения для космологии.

أمثلة من مجموعة نصية لـ٪ 1
1. Именно это красное смещение и помогло астрономам установить возраст открытых галактик.
2. Точно установить возраст довольно трудно, для этого нужно на спектрографе определить так называемое красное смещение.
3. Советский русский - вот металл. ("Красное смещение", Москва, 2003 г.) Читатели "Советской России" - самые достойные граждане Российской Федерации.
4. Белая премия за красное смещение Вручены премии Андрея Белого премия литература В субботу в Санкт-Петербурге в Европейском университете состоялось вручение литературной премии Андрея Белого (один рубль, яблоко и бутылка водки), созданной в 1'81 году деятелями ленинградской независимой литературы.
5. Петербургский поэт -- автор книг "Делириум", "В повторном чтении", а также сборников эссе "Критическая масса" и "Сопротивление поэзии". Награжденный сборник "Красное смещение" -- это история планомерного поиска живого чувства в огромных постмодернистских лабиринтах.
What is КРАСНОЕ СМЕЩЕНИЕ - definition